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Abstract-The behavior of the laminar binary boundary !ayer with blowing is coupled with the 
kinetic-evaporation-rate law of the surface material. It is found that the solution of this combined 
problem exhibits an asymptotic behavior at large Reynolds numbers which is identified with the usual 
near-equilibrium solution in which the vapor near the wall is very nearly in thermodynamic phase- 
change equilibrium. However, the nearequilibrium solution is invalid in a region near the origin of the 
boundary !.ayer, which is characterized by a length formed with physical parameters describing the basic 
Row and the surface properties. In this region, which is treated here approximately, the blowing 
parameter decreases to zero, the wall temperature increases, and the sublimation rate tends to an 
upper limit as the origin of the boundary layer is approached. 

The principal result of the analysis is the estimation of the length of the region of transition to the 
near-equilibrium solution. This length is an independent characteristic of the problem and does not 
scale as do the boundary-layer properties (that is, with the Reynolds number). This implies that while 
the transitional length on typical re-entry vehicles is small and probably negligible unless the leading 
edge is very sharp, practical wind-tunnel test models can easily be affected over most of their chord. 
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blowing parameters ; 
concentrations [mols/mol of .mixture]; 
Stanton number, q/peue(hnur -- h,); 
specific heat; . 

dimensionless parameter, hM8/RTa,,; 
enthalpy ; 
dimensionless parameter 
= 1 - T2jTaWo; 
molecular weight of component i 
(i -= s for sublimating spectes, i = A 
for free-stream air): 
free-stream Mach number; 
mass rate of sublimation; 
static pressure; 
Prandtl number, 
surface-vaporization (thermodynamic) 
constant, see equation (12) ; 
heat-transfer rate; 
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universal gas constant; 
temperature ; 
adiabatic wall-recovery temperature 
[Tw for k(ST/Sy), == 01; 
dimensionless parameter, see equation 
(27) ; 
streamwise distance (origin at stagna- 
tion point); 
constant defining the boundary-layer 
transfer properties [equation (2)]; 
constant defining the recovery- 
temperature variation with blowing 
[equation (5.)] ; 
the factor 7 - l/g; 
isentropic exponent of the gas; 
leading-edge effect scale, equation (41) 
[units of length] ; 
vaporization coefficient [equation 
Ul)l; 
heat-transfer parameter, defined by 
equation (44) ; 
effective heat of sublimation; 
coefficient of viscosity; 
heat-transfer parameter, for reference 
conditions without blowing [equation 
(20)] [units of pressure]; 

383 



384 A. F. CHARWAT 

PY density of the gas; 
0, parameter defined in equation (30); 
7, dimensionless parameter [see equation 

(18% 

Subscripts 
e, free-stream conditions; 
0, reference conditions without blowing; 
T, stagnation conditions; 
Mt > wall conditions; 
a, conditions existing asymptotically far 

downstream. 

Subscript s pertains to sublimating species. 
A bar over a symbol indicates average over 

binary mixture in the boundary layer. 

I. INTRODUCTION 
THE COMPLETE solution of a flow field over a 
subliming surface represents an equilibrium 
among the rate of heat transfer to the wall, the 
rate of phase change of the surface material, and 
the rate of diffusion of the vapor evolved at the 
wall through the boundary layer. These con- 
ditions determine the surface temperature and 
the blowing rate. 

The problem is usually treated as follows : The 
binary boundary-layer equations are solved with 
the wall temperature and the blowing rate 
treated as independent boundary conditions. The 
solution yields the temperature gradient, that is, 
the heat-transfer rate, as a parametric function of 
the wall temperature and the blowing rate. Since 
the blowing rate and the heat transfer are re- 
lated by the effective heat of sublimation of the 
material, one more relation is needed to fix 
uniquely the two free parameters (wall tempera- 
ture and blowing rate). At this point we make 
the approximation that the phase change occurs 
at thermodynamic equilibrium; that is, the wall 
temperature is the phase-equilibrium tempera- 
ture at the existing partial pressure of the vapor 
near the wall (which is known from the solution 
of the binary boundary-layer equations). This 
relation suffices to complete the formulation. 

The assumption of thermodynamic phase 
equilibrium at the surface is conceptually in- 
correct because at equilibrium the net mass 
transfer between phases is zero. Therefore, a 
more complete kinetic relation among the 
temperature, concentration, and rate of phase 

change is actually needed. This has been dis- 
cussed in a number of papers, [l-5] but no 
solution including such a kinetic surface-evapora- 
tion condition has been obtained, nor have the 
implications of this phenomenon been fully 
explored. 

The near-equilibrium solution is valid at 
sufficiently high Reynolds numbers, which can 
be illustrated by saying that when the Reynolds 
number is high, the impedance of the boundary 
layer to diffusion of vapor is very much higher 
than the impedance to surface phase change, 
which is in series with it [4]. The latter is then 
negligible, and the coupling between the flow 
and the surface-evaporation phenomenon is 
diffusion limited. This statement leads to the 
question, What exactly are the lower limits of 
validity of this approximation? 

If the surface-evaporation-rate law is con- 
sidered, the results of the near-equilibrium 
approximation must be interpreted as saying 
that the dz@rence between the actual wall 
temperature and the thermo-dynamic-equi- 
librium temperature of the vapor is small 
everywhere. The actual wall temperature is 
determined by the rate equation so as to supply 
the mass flux from the solid to the vapor phase. 
The equilibrium temperature is determined by 
the partial pressure which must exist near the 
wall to drive the mass flux across the boundary 
layer by pressure diffusion. Smallness is measured 
in comparison with the temperature difference 
driving the heat transfer; that is, the difference 
between adiabatic recovery and wall tempera- 
ture. 

The well-known result of near-equilibrium 
solutions for self-similar flows, for instance, is 
that the surface (equilibrium) temperature is 
constant, while the sublimation rate varies as the 
inverse square root of the Reynolds number. We 
may consider the Reynolds number as a unique 
measure of the distance from the origin of the 
boundary layer if the free stream is fixed and the 
wall temperature is constant. But if the mass 
flux increases towards the origin of the boundary 
layer, then the wall temperature must increase 
according to the sublimation-rate law. The wall 
temperature cannot be constant, and therefore 
the Reynolds number cannot be a unique 
measure of distance. Also, the near-equilibrium 
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approximation must break down at some 
distance towards the origin. 

The properties of the boundary-layer scale in 
terms of two parameters, the Reynolds number 
and the wall temperature (or more correctly, 
some ratio of free-stream temperature to wall 
temperature). Having recognized that the wall 
temperature is coupled to the problem through 
an independent rate equation, one concludes that 
the introduction of the kinetics of surface phase 
change brings in a new scale parameter. This 
scale has the form of a distance from the origin 
of the boundary layer for fixed free-stream 
conditions and given thermodynamic phase- 
change constants. 

The condition for validity of the near- 
equilibrium approximation can now be stated 
as follows: The approximation is valid when 
the Reynolds number is much higher than the 
Reynolds number formed with the leading-edge 
scale described above. Moreover, the illustrative 
argument based on the relative magnitude of the 
impedance to mass transfer is seen to be in- 
complete; it does not consider the nonlinear 
coupling between the “impedance” and the 
driving potential. For instance, it implies that 
when the Reynolds number is very low the 
boundary-layer transfer impedance is low and 
the coupling between flow and sublimation is 
dominated by the surface impedance (rate 
limited). This is not true if the Reynolds number 
is low by virtue of low pressure at a given 
distance from the origin. It is only true if the 
Reynolds number is low by virtue of small 
distances from the leading edge. 

The purpose of this study is to investigate the 
character of the rate-limited sublimation prob- 
lem and, in particular, to determine the scale of 
this region. It is proper to make two remarks at 
this point. First, the analysis is based entirely on 
continuum boundary-layer concepts. This is 
equivalent to saying that the scale of the rate- 
limited region must be larger than some mini- 
mum distance required for validity of continuum 
boundary-layer concepts for the analysis to be 
meaningful. This situation turns out to be 
practically possible. Second, in regard to practi- 
cal flows over somewhat blunted bodies, the 
statement “origin of the boundary layer” must 
be interpreted as meaning a virtual origin from 

which the boundary layer would start to attain a 
thickness and profile it has at the point under 
consideration. This implies that the distance to 
this virtual origin must be larger than the radius 
at the blunted nose. 

The current trend towards finer re-entry shapes 
and the concern with problems such as the 
interaction between ablative mass addition and 
hypersonic viscous induced pressure [6]-typi- 
tally a leading-edge phenomenon-tends to 
bring the transitional sublimation regime into 
the realm of practical problems. 

Finally, the present solutions for the rate- 
limited sublimation region involve a number of 
approximations in the treatment of the boundary 
layer and should be interpreted mainly as a 
study of whether or not the problem is sufficiently 
significant to deserve a more rigorous and much 
more difficult analysis. 

II. FORMULATION 

The problem requires the simultaneous solu- 
tion of both the boundary layer and surface 
phase-change rate equations. Phenomenologi- 
tally, these fall into four groups describing, 
respectively, the energy and the mass-transfer 
properties of the boundary layer and the surface. 

The first is a solution of the classical binary 
boundary-layer equations which we consider to 
be uncoupled from the mass-diffusion equation 
[7], implying a Lewis number approximately 
equal to one. We do not consider chemical 
reactions between the interdiffusing species. The 
solution is taken in the approximate form 

where B is a normalized blowing parameter 

(3) 

The subscript 0 indicates reference conditions 
(non-ablating surface), and the Stanton number 
ch is defined on the basis of the adiabatic 
recovery enthalpy (temperature) : 
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Equation (1) is the well-known linear approxi-, 
mation derived from similarity solutions which 
holds to values of B on the order of 0.3. The 
numerical value of the proportionality constant 
and its dependence on Prandtl number, mass 
ratio, and pressure gradient (within the similar- 
flows family) has been discussed exhaustively in 
the literature [I, .7-lo]. In the context of the 
discussion which follows, it is to be considered 
as a formal approximate expression of the 
behavior of the Stanton number for B suflciently 
small, with a an unspecified function of the 
indicated parameters, applicable also to non- 
similar flows. It will be seen a posteriori that l3 
goes from 0 when Rez = 0 to an asymptotic 
value Bm when Re, + co. In the initial region the 
wall-temperature gradient is very strong and 
equation (1) is only defendable as the first 
term of an expansion about B = 0. In the 
region of asymptotic approach to equilibrium 
gradients are small* and, provided B, -c: O-3, 
equation (1) holds as a “local similarity” 
solution. It is difficult to imagine a situation in 
which essential errors in the trends exhibited in 
the transition region would result from the use 
of this approximation. 

To the same degree of approximation (he 
recovery factor for the binary boundary layer 
is expressed in terms of the recovery factor for the 
reference flow : 

Taw - Tw B --- r = G,, _ Tw = ro - E. B (5) 

The numerical values of j3 = j3(Pr, dp/d_x, 
dTw/dx, MA/MS) are less well defined from 
available solutions even for self-similar flows. It 
will be seen later, however, that the proportion- 
ality constants a and p appear in the solution only 
as a ratio. Thus, if they both vary in the same 
way with MJMA, Pr, dp/dx, and dT/dx to a 
first approximation, the effect of this dependence 
is minimized. 

- .--__ 
,* The external pressure gradient is an independent 

parameter. It is assumed to be such that use of the “local- 
similarity” concept can be justified in regard to it. 

The thermal coupling between the flow field 
and the boundary is specified by 

rl = ti,h.g (6) 

where h, is the heat of sublimation of the wall 
material. This approximation neglects radiant 
and conductive heat losses. It also neglects the 
heat needed to bring the sublimating material 
from its initial temperature to sublimation 
temperature; both are fair approximations for 
low-temperature sublimators. 

If we define 

B’ = - & -._ (haW - hul) 
P&cCh As 

(7) 

and use the identity 

B Cl6 Tat+, - Tw 
B’ Ch, (Taw -- Tw) 

(8) 

we obtain the second well-known relation of 
simple theories. 

The solution of the boundary-layer diffusion 
equation for the transfer of the sublimated 
material away from the wall is [7] 

CS - GUI (hr - h,) - ~__ ;= ~.__. __.._ 
f&l (he - ha) (9) 

This form is strictly true only for the case where 
both Le and I+ are equal to one; in this case the 
diffusion equation, and the equation for the 
distribution of total enthalpy in the boundary 
layer are identical and concentration and energy 
profiles are similar. The effect of Pr on the 
similarity of the profiles is minor [7, lo], weaker 
than its effect on Ch itself. This justifies the use 
of equation (8) without also setting Pr = 1 in 
equation (1) and equations derived from it. 

Combining equation (9) with Fick’s law [7], we 
obtain an expression for the wall concentration 
as a function of the rate of sublimation at the 
wall : 

c haw - hw = swpeue ---- 
bre. - hw ch. (10) 

A last equation couples the concentration of 
the sublimated species in the boundary layer to 



the su’bhafioc. phenomenon itse!f, The ne: rz!c 
Gi’ exchange 4 surface materia: across the 
surface~-p&.nti& barrier, is 

where 5 is an empirical “vaporization. co- 
efhcient”, ?.: equ and C8 cqu are the equifibri~ 
partiz; pressure and concentration correspond- 
ing to the wall temperature, and P,, and G0 are 
the actual partial pressure and concentration of’ 
the subliming material. immediately over the 
surface in the boundary layer. For a two- 
compon;nt mixture one has the following 
auxiliary relations between the concentrations 
and the molecular weights (I%? is the mean 
molecular weight of the mixture): 

CA + cs = 1 i 

An important characteristic of the phenomen- 

(15; 

complete the general de~nitiou of the problem, 
We shall assume in this anslysis that i, can be 
treated as an n priori (or iteratively) determined 
constant, not dependent on the concentrations 
PII+ 

The following dimensionless parameters, 
which depend only on the properties of the 
surface and/or the free-stream conditions, are 
now defined : 

In addition, define the function e (dimensions of 
pressure) 

on is that there is a maximum rate of escape of * 1 R 
surface atoms, which occurs when the concen- 
tration of the material in the surrounding gas is 

14‘=-- J( 4 2n jT; Tawo pe we Go d(W. (203 

zero and which depends only on the wall The function 5 represents the product 
temperature 121. Several analytical expressions Ch,l/(Re,) which, at least for self-similar flows, 
for the value of PS equ that determines this is a constant. Otherwise this product varies with 
lnaxim~ car, be written down, depending on x through the streamwise pressure and the wall- 
the subtlety of the microscopic model. The temperature gradients. While questions must be 
simplest one, corresponding to the integral of raised as to its behavior near the singular point 
the Clausius-Clapeyron equation, is x = 0, which are mentioned again later, at large 

P 
MA 

s equ = P ew 
r ) 

Reynolds numbers it is certainly a finite, slowly 
-- - .RTw (13) varying quantity. 

E~minating tis between equations (3) and 
where p is a constant. This yields for the maxi- (I 1) and rearranging, we write 
mum (forward) vaporization rate the expression 

(fia)mrtx= cp J(2._)exp(_!!&~). (14) ~pe”:cho~(2~~wo)~~~~~~~~ (21) 

SW 
The set of equations (I), (3), (9) and (13), 

together with an auxiliary caloric; equation of By straight substitutions we transform it into an 
state defining E* equation in only one unknown, which is B: 
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&= 1 - (a/h) B 
1 

112 

1 + B [T - (MA/M,) l?H - (a/Pr)] - (aT/Pr) B2 1 
[pe-” exp (H 

B [T - (MA/MS) l?HJ - (aT/Pr) p 

1 + B [7 - (MA/M,) FH - (a/Pr)] - (aT/Pr) Bi i 
(22) 

- ” 
k + B [T - (bfA/d!&) I’H - k (a/Pr)] - (cm/f?) B2 

k + B [T - (MA/MS) FH - k (a/Pr)]- (aT/Pr) B2 -I- rH [(a/ Pr) B - 11 II! 
III. ASYMPTOTIC BEHAVIOR DOWNSTREAM 

For large values of Re the left-hand side of 
equation (22) vanishes and the equation yields 
a non-zero* value B = B, given by the solution 
of the factor in brackets on the right-hand side. 

Note that this corresponds exactly to stating 

[PS equ - Pm1 = 0 
The solution is identified with the “equilibrium 
solution” in which the partial pressure of the 
vapor, and consequently also its concentration 
and temperature, are values corresponding to 
thermodynamic phase-change equilibrium. 

In the present formulation the solution is 
given in terms of the constant p in the analytical 
expression for Ps equ (instead of specifying 
T, = T8 equ separately from thermodynamic 
tables). A convenient graphical procedure is 
obtained defining 

* The singularity B = 0 is uninteresting. It corresponds 
simply to flow without sublimation. 

Bm [T - rH(&/h&)] - B2, (u/Pr) 7 
1 - (a/Pr) B, (23) 

in terms of which the asymptotic solution takes 
the form 

ln $! = - & + In [Sk*] (24) 

This is plotted in Fig. 1 for a particular value of 
I?. For any external static pressure P, and 
parameters describing the properties of the 
sublimating material (p and H), one obtains a 
unique value for the wall-temperature function 
X,. With this value of X, and further para- 
meters pertaining to the reference flow and the 
sublimating material (a/Pm), Fig. 2, which is a 
plot of equation (23), yields the value of the 
blowing parameter B,. 
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Figure 3 is an auxiliary figure giving the varia- 
tion of a/Pm. This can be written as 

k = (1 - k) [l - (Te/z.r)]’ (25) 

The two proportionality constants a and fi [see 
equations (2) and (5)] appear as a ratio. There- 
fore, their dependence on the principal variables 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 o-6 09 I.0 

g- 5, 

FIG. 2. Asymptotic blowing parameter vs. waii- 
temperature function. 

I.0 I I 
P 

i I 
/ /I 

I a. I III 

r-r-7 I/( 
I I II 

10-21 ! I I lllll I I I Ill!] 
IO IO0 

Mach number, M 

FIG. 3. Variation of some Mach-number-dependent 
parameters. 

of the binary bounty-layer problem, which are 
~&/MA, Pr, pressure and wall-temperature 
gradient, is minimized. If one makes the hypo- 
thesis that both vary in the same fashion with 

these parameters, which seems probable, then 
the combination a/Pm is to a very good approxi- 
mation a function only of the free stream. Using 
the flat-plate solution given in reference 9, the 
numerical value of the ratio a/#? is 9.64. 

IV. BEHAVIOR NEAR THE STAGNATION POINT 

Equation (22) has the form 

f(B) -- 
&es) = -F’ (26) 

The parameter .$ appearing on the left-hand 
side of equation (26) represents the product 
ChQz/(Rez). The assumption is made that this 
product is a constant, as it is for self-similar 
bound~y-layer solutions. Now, since q = A& 
is bounded according to the surface-evaporation 
equation, the assumption implies that the wall 
temperature tends to the recovery temperature 
towards the leading edge (Rez -+ 0). It follows 
that the wall temperature is variable, and 
C~*~(~e~) = constant can only be good in the 
sense of “local similarity”. 

It is worth noting that the above implies two 
statements of unequal importance to the present 
analysis. The more important one concerns the 
behavior of ChO; that is, that Ch, grows without 
bounds towards the leading edge. This leads to 
the result that B - ~~~C~~ tends to zero there 
and, thus, that B varies between zero and B* 
over the entire region of interest. The second and 
less important one concerns the numerical 
accuracy of the assumption Ch,yi(Re,) = 
constant. It is undoubtedly poor very near the 
origin where the wall-temperature gradients are 
large, but it is probably satisfactory in the 
region of asymptotic approach to the near- 
equilibrium solution downstream of the leading 
edge. 

It is not possible to discuss conclusively the 
difficult problem of the sing~~~ty at the leading 
edge. It must be accepted on the basis of heuristic 
arguments and the analogy with the behavior of 
ordinary boundary layers at the leading edge, 
which involves similar difficulties. Physically, 
the behavior outlined in what preceded is quite 
reasonable. Moving upstream towards the lead- 
ing edge, the heat flux to the wall increases, and 
the wall temperature must rise to permit an 
increased rate of sublimation. 
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Returning to equation (26). the right-hand 
side is expressible in the form of a series in the 
interval 0 < B < Bm. If the asymptotic blowing 
parameter B, is reasonably small, which is 
already implied by the use of the linear-blockage 
equation, equation (1) a limited number of 
terms of the series will represent the behavior of 
the function Shroughout the range. 

‘The series is 

where 1 or 8 are scale factors defined by: 

4 is 4imensionless. 5 has dimensions of length. 
It can be given explicitly as a function of 
reference-flow sublimating-materiai parameters 
by* 

:vith the following expressions for the function 
and its derivative cvalnated at the origin: 

(28) 

(2% 

The parameter cr has the form 

and it was defined so as to become one when 
k = 0 (Prandtl number unity). 

The first two terms of the series expansion, 
tend to the asymptotic limit of,f(O)/,f’(O). As the 
Reynolds number increases, this limit is not 
correct because the ratio J(O)/f’(O) does not 
equal 3, unless 13, tends to zero. We know Bm 
independently from equations (23) and (34), or 
Figs. 1 and 2 

The argument suggests that if cne replaces in 
the two-term expansion 

one obtains a good approximation to the be- 
havior of I3 for all Rez, provided 5, is sufficiently 
small to justify he linear expression fcr the 
blockage factor, equation (1). 

_%ccordEngly, an approximate equation for B is 
as follows : 

Equation (32) is compared to :he numerical 
solution of the full equation (22) on Fig. 4 for a 
particular example. 

-____ 
I, : 2 f a. 5 37-9--I IO 

J- $ 

F:G. 4. Comparison of full solution with the approximate 
modified first-term expansioti. 

By straightforward substitutions among the 
basic equations (l), (3), (9), and ji3) all physical 
parameters of the problem can be written out in 
terms of B. If these are then expanded in series 
and 5’ as given by equation (32) is substituted in 
the first term of the expansion, one obtains 
explicit expressions of their variation near the 
origin of the boundary layer. As an example, the 
equation for the blowing rate is: 

This equation shows that ,tiS starts at the 
leading edge from its maximum value (dictated 
by kinetic considerations) and decreases down- 
stream to its asymptotic behavior, which is 

* N3te that CQ l/(Rez) is a comtant with x 
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proportional to the inverse square root of the the Mach number, and the free-stream static 
streamwise distance. temperature, respectively. The bracketed term in 

Similar explicit expressions for the varrialion the numerator depends only on the properties of 
of the other parameters are given in more the s~i~lin~atin~ material. The entire factor on the 
de&l in reference 13. The concentration and the left-hand side is independent of pressure. Conse- 
partial pressure of the sublimating species have quently, Fig. 5 shows that during the initial 
at the origin values which depend only on k (the re-entry from space (p/P, := ‘xj during which the 
Prandtl number) and which are zero for the Mach number is roughly constant (therefore 
particular case of PP == I( They increase down- N = constant and 5 = constant), S increases to 
stream. The wall tem~erat~~re at the leading a maximum at some a%itude fixed by the value 
edge is the adiabatic recovery temperature for no of the parameterp and then decreases. 

FIG. 5. Typical variation of the rate-cnntroIled Row length, showing lines of B, = conskm. 

ablation, that is, if Pr = I, iP is the free-stream 
stagnation ~em.perature. It decreases downstream 
to its asymptotic vattie. 

VI. DISCUSSIQN 

It is of interest to consider further the para- 
meters 8, which determines the scale of the 
adjustment to the asymptotic solution. From its 
definition and using the equation of state, one 
obtains 

In order to show the magnitudes involved, 
consider the following estimares: Let the model! 
be a slender cone for which 191 

Ch,.,d(Rez) - 3.51i. 

lissume Fe and ae constant at their value in the 
tropopause (pea6 - 4 x 1W lb/f@ It follows 
that 

This is plotted in Fig. 5. Note that the three The constant p can be obtained from vapor- 
bracketed terms of the denominator on the teft- pressure data. Reference 12 (pp. 17%1755) 
hand side depend only on the basic Row field, gives a table for selected organic and inorganic 

z 1-3 A’3 x IO-” !b/ft (37) 
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substances from which it is evident that a 
representative value is p = log Ib/fta.* (The 
value p varies around this average by one order 
of magnitude for almost all the substances listed). 
The vaporization coefficient E is poorly known. 
For solid sublimators it is doubtful that it should 
exceed 0.1 [2], and it can be less than that by 
two orders of magnitude. Finally, the ratio 
M~JMA can be taken as unity for the purpose of 
this estimate. 

It follows that, quite generally, 

5 
10-l’ < x3 < 10-s ft. (38) 

The magnitude of 6 is seen to depend very 
strongly on the value of H. Since it increases 
rapidly with H, let us illustrate the problem for 
a large value of H: Data typical of graphite 
(A = 25 000 Btu/lb, MS = 12) at a flight Mach 
number of 15 yield approximately 

N 16.7. 

The value of p = 10s lb/f@ used in the preceding 
estimates represents graphite quite well-well 
enough considering the uncertainty in the 
evaporation coefficient E. Since 6 increases with 
pressure, let us consider relatively low altitudes 
consistent with the assumed Mach number and 
high-speed re-entries, say 30 000 ft. Consider a 
20-deg cone for which the surface pressure is 
approximately 300 P,. It follows that 

1O-3 < 6 < 10-l in. 

Had an altitude of 25 000 ft been assumed, 6 
would be larger by an order of magnitude. Had 
data typical of teflon been used (A - 1000 
Btu/lb, MS = IOO), H would have been in the 
order of 5, and 6 would be entirely negligible. 

It is interesting to note that the maximum 6 for 
a given H occurs at values of p/P6 which corre- 
spond to Pe considerably higher than 1 atm. 
While pressures above atmospheric can occur, 
because pe and A, are values outside the 
boundary layer behind the leading shock, they 
would not normally be as high as indicated for 
6 max. 

l In the notation of the reference, p = IO* where b is 
tabulated. 

The rate-controlled region can be taken to 
extend over a distance from the origin equal to 
100 6; that is, for points on the surface lying 
beyond this limit the error incurred by using the 
equilibrium solution for B, m,, TW, etc., is less 
than 10 per cent. Figure 6 shows the behavior 
of the rate of sublimation indicated by both the 
equilibrium approximation and the full solution 
and illustrates the present argument. 

~-=.;~~tion 

x (distance from the leodlng edge) 

FIG. 6. Schematic variation of the sublimation rate. 

The preceding estimates of the scale of the 
leading-edge effect indicate clearly that, in com- 
parison with reasonable man-made re-entry- 
vehicle sizes, the region of transitional sublima- 
tion is very small, indeed normally negligible. 
However, 6 is an independent parameter which 
does not scale with the body geometry. The 
sublimation of small models in wind tunnels or 
meteorites in the atmosphere may be totally 
dominated by transitional effects. 

This scaling problem can best be demon- 
strated by using a concrete example. Consider 
the wind-tunnel experiments reported in re- 
ference 3 using camphor in a Mach 5 wind 
tunnel. For camphor the materials data at actual 
test conditions can be given quite accurately, 
except for E: 

h = 330 J/g, MS = 152, p = 1.74 x log lb/f@. 

Estimate c at 0.1 as before. 
With the tunnel recovery temperature at 

350°K and the static pressure of 10 mm Hg, 
one finds H = 17.2 and p/Pe = 6.3 x 107: 

6 N 2.6 x 10-a in. 
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Considering that the transitional sublimation 
region extends to a distance of the order 100 6, 
one concludes that the entire wed-?~neZ model 
is affected by transitional effects under these 
test conditions. 

One other aspect of the aerodynamics of 
subliming bodies can be affected by the present 
results in an important manner. It is the problem 
of surface recession and terminal shape. Briefly, 
the shape of a slender body ycz, tf at any instant 
t is given by the solution (with proper boundary 
conditions) of 

&I,. t) K 
r \-(1.1 

at 
- IjtS(Z, t) = - 

(t/-m + l/s = 
K 

where K is a constant, X1 the distance to the 
point (x, y) from the leading edge, which is 
itself receding relative to fixed coordinates at an 
unknown rate 4(t). 

The nature of this problem is such that 

limm,t,a) # ~(~,t,a-o) 
b-0 

and the analytical solution for the terminal shape 
of pointed bodies using the near-equilibrium 
form of the local sublimation rate is not correct.* 
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R&urn&-Le comportement de la couche liiite laminaire binaire avec soufflage est couple avec la loi 
de la cidtique d’evaporation du materiau de la surface. On trouve que la solution de ce probleme 
combine presente un comportement asymptotique a des nombres de Reynolds Cleves qui s’identifie 
avec la solution habituelle p&s de l’equilibre dans laquelle la vapeur prb de la paroi est t&s voisine 
de l%quilibre thermodynamique du changement de phase. Cependant la solution au voisinage de 
l’dquilibre n’est plus valable dans une region pres de l’origine de la couche limite, qui est caractbisee 
par une iongueur forrot% avec des parametres physiques decrivant Wcoulement de base et ies propriettts 
de la surface. Dans cette region, qui est trait& ici approximativement, le parametre de soul-llage 
decrolt vers z&o, la temperature par&ale augmente, et la vitesse de sublimation tend vers une limite 
sup&ieure lorsqu’on approche de l’origine de la couche limite. 

Le rbultat principal de l’ana.lyse est l’estimation de la longueur de la region de transition vers la 
solution au voisinage de l’equilibre. Cette longueur est une caractbistique independante du probleme 
et ne varie pas comme les propribtes de la couche limite (c’est-a-dire, avec le nombre de Reynolds). 
Ceci implique que tandis que la longueur de transition sur des v&hicules typiques de rent&e est 
faible et probable~nt n&ligeable a moins que Ie bord d’attaque soit t&s aigu, des modcles 
pratiques d’essais en southerie peuvent faciiement %tre affect&s SUT la plus grande partie de leur corde. 

Zusannne~-Das Verhalten der laminaren, bin&en Grenzschicht mit Ausblasen wird mit dem 
Gesetz der kinetischen Verdampfungsgeschwindigkeit des Oberfltichenmaterials gekoppelt. Es ergibt 
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sich, dass die L&sung dieses kombinierten Problems bei grossen Reynoldszahlen ein asymetrisches 
Verhalten aufweist, das der gebrauchlichen Lljsun, n fur nahezu erreichtes Gleichgewicht, wo der 
wandnahe Dampi nahe am thermodynamischen Gleichgewichtszustand des Phasenwechsels liegt, 
gleichgesettt wird. Die L&sung fur das nahezu erreichte Gleichgewicht ist jedoch in einem 3ereich 
nahe dem Ursprung der Grenzschicht ung~lti~; dabei wird der Ursprung von einer Lange 
gtkennzsichnst, die aus physikatischen Parametern, die die Grundstr6mung und die Obertlacheneigen- 
schaften beschreiben, gebildet wird. In diesem hier naherungsweise behandeiten Bereich geht der 
Ausblasparameter nach Null, die Wandtemperatur nimmt zu und die Sublimationsgeschwindigkeit 
tendiert nach einem oberen Grenzwert, wenn der Ursprung der Grenzschicht erreicht wird. Das 
Hauptergebnis der Analyse liegt in der Llngenabschitzung fur den ubergangsbereich zur L&sung fiir 

mhezues Gleichgewicht. Diese L&nge ist eine unabh&ngige Kenngrijsse des Problems und iindert sich 
nicht, wie es bei den Eigenschafte~ der Grenzschicht (dh. mit dar, .Reynoldszaht) der Fall ist. Dies 
schhesst ein, dass die Modelle fur praktische Versuche im Windkanal leicht fast iiber ihre ganze 
Profiltiefe beeinfiusst werden ktinnen, w&end die Ubergangslange an typischen Wiedereintritts- 
fahrzeugen klein ist und wahrscheinlich vernachllssigbar, wenn die Vorderkante nicht sehr scharf ist. 

~~HIIOTU~H~-X lone~enne .na~lil~~ap~ioro CiwapHorC norpannsaoro cnon co BA~~M n3a12- 
MOCHA3Bl10 C 3aIZoHJM, onpe~clnmout~~ IrIrlIeTm~y IicnapeHIlfi MaTepklajra noaepxaocTw. 

Ha$QelIo,vTO IlpH 6OJIbmHX ~~~~eH~~Xq~~~~ Pe~lIO~L~CapemeH~83TO2tB3a~MO~BR:!?HllO~ 

aazarx a~~IiM~ToTll~eCK~ ~0~~a~aeT f O~~~ll~M peuI~~l~eM WuI caIy%lFI IIOYTTEI paBHoBecilo~o 

fWf?TORHMR CACTeMbI, ROl'&a nap J CTf?HKM IlaXORHTCR IlO'4TA R Tep~O~lIHaM~qe~~OM @3OBOM 

pil~~Ioner,ItIi. C?;~rrarto, peirremte 3;rtr r,nyqan 0no;Iopaanonectroro cocTofmnri encrere~t riecnpa- 
rie;r.nwno nnrr o6nacTn BO;IBIIII~II~R~IIIIF norpaIW1~0ro cnon, KoTopan xapaKTeprr3yeTcrI 

AZIMHOIC, 06paRORaHHOi H3 @BRWIeCKl%X IIapaMeTpOB OCHOBHOI'O IIOTOtta II TIOBepXHOCTIl. R 

aTO& OI%IaCT~,OffI4CaHHO~ B pa6OTe IIpEl~JIllHceHlIO,IIapaMeTp B&yRa yMeHblIIaf?TCR,10 H'iER, 

TehtncpaTypa CTAIIHM ynenasasaeTcR, a CHOpOCTb oy6nrrmanms CTpeMHTCn K BepXlieMy npe- 

.qee.ny no sepe np~6~~~e~~~ H rfaqany ~orpaH~q~or0 c3ion. 
OCIIOBH~I~ peay~bTaToM HacTo~me~o anaxnao xnnneTcn ot~enna gnxnrd nepexoRnoL 

06nacTa K oxoxopaBriosecrromg pemeaaro. %a ~jruria rinrtnercti neaarincnsroZl xapaKTepncTrr- 
noB aanasn M He 5iaMennecTn 13 oTJm9ne OT xapaKTepncTnI{ norpaHIlrHor0 CJIOR (T.e. C 

rtpaTepMeM Peanosbwa). OTcrona cnenyeT, YTo Towa HaK AnlIia nepexofla Ha 06WIHbIX 

paKeTax, I9oaepamawmIxcri B 6lTMOCf$epy, MajIa H B<O.?MO?KHO npeHe6pewMo Mana, t?CJIA 

TOJlbICO IIepf?~HlWI HpOMIta He OYoIIb OCTpaR, MOReJIM ;I.?11 IKpO~yBW B a3po~I~lraMcI~IerIio~ 

Tpy&? jfelW0 MOI'.yT &ITb 3aTpittIyTL: B 60.?bUI& 'faCTI IZX IIOBepXlIOCT~. 


