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Abstract—The behavior of the laminar binary boundary layer with blowing is coupled with the
kinetic-evaporation-rate law of the surface material. It is found that the solution of this combined
probiem exhibits an asymptotic behavior at large Reynolds numbers which is identified with the usual
near-equilibrium solution in which the vapor near the wall is very nearly in thermodynamic phase-
change equilibrium, However, the near-equilibrium solution is invalid in a region near the origin of the
boundary layer, which is characterized by a length formed with physical parameters describing the basic
flow and the surface properties. In this region, which is treated here approximately, the blowing
parameter decreases to zero, the wall temperature increases, and the sublimation rate tends to an
upper limit as the origin of the boundary layer is approached.

The principal result of the analysis is the estimation of the length of the region of transition to the
near-equilibrium solution. This length is an independent characteristic of the problem and does not
scale as do the boundary-layer properties (that is, with the Reynolds number). This implies that while
the transitional length on typical re-entry vehicles is small and probably negligible unless the leading
edge is very sharp, practical wind-tunnel test models can easily be affected over most of their chord.

NOMENCLATURE R, universal gas constant;
B’, B, blowing parameters; T, temperature;
C, concentrations [mols/mol of mixture];  Taw, adiabatic wall-recovery temperature
Ch, Stanton number, g/ pette(haw — Aw); [T for k(eT/6y)w == O];
Cp specific heat; X, dimensionless parameter, see equation
H, dimensionless parameter, AM;/RT g1, ; @n; )
h, enthalpy; X, streamwise distance {origin at stagna-
k, dimensionless parameter tion point);
= 1 — To/Tawg; a, constant defining the boundary-layer
M;,  molecular weight of component i transfer properties [equation (2)};
(i = s for sublimating species, i = A4 B, constant defining the recovery-
for free-stream air); temperature variation with blowing
M,  free-stream Mach number; {equation (5)];
ms, mass rate of sublimation; I, the factor 7 — 1/7;
p, static pressure; YV, isentropic exponent of the gas;
Pr, Prandtl number, 5, leading-edge effect scale, equation (41)
P, surface-vaporization (thermodynamic) {units of lengthl; _
constant, see equation (12); €, vaporization coefficient [equation
q, heat-transfer rate; (1L
£, heat-transfer parameter, defined by
equation (44);
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Force under Project RAND. .It is an al?ridgment .Of s coefficient of Viscosity;
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conditions without blowing {equation
(20)] [units of pressure];
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Py density of the gas;

o, parameter defined in equation (30);

T, dimensionless parameter [see equation
(18)].

Subscripts

e, free-stream conditions;

0, reference conditions without blowing;

T, stagnation conditions;

w, wall conditions;

0, conditions existing asymptotically far
downstream.

Subscript s pertains to sublimating species.
A bar over a symbol indicates average over
binary mixture in the boundary layer.

I. INTRODUCTION

THe cOMPLETE solution of a flow field over a
subliming surface represents an equilibrium
among the rate of heat transfer to the wall, the
rate of phase change of the surface material, and
the rate of diffusion of the vapor evolved at the
wall through the boundary layer. These con-
ditions determine the surface temperature and
the blowing rate.

The problem is usually treated as follows: The
binary boundary-layer equations are solved with
the wall temperature and the blowing rate
treated as independent boundary conditions. The
solution yields the temperature gradient, that is,
the heat-transfer rate, as a parametric function of
the wall temperature and the blowing rate. Since
the blowing rate and the heat transfer are re-
lated by the effective heat of sublimation of the
material, one more relation is needed to fix
uniquely the two free parameters (wall tempera-
ture and blowing rate). At this point we make
the approximation that the phase change occurs
at thermodynamic equilibrium; that is, the wall
temperature is the phase-equilibrium tempera-
ture at the existing partial pressure of the vapor
near the wall (which is known from the solution
of the binary boundary-layer equations). This
relation suffices to complete the formulation.

The assumption of thermodynamic phase
equilibrium at the surface is conceptually in-
correct because at equilibrium the net mass
transfer between phases is zero. Therefore, a
more complete kinetic relation among the
temperature, concentration, and rate of phase
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change is actually needed. This has been dis-
cussed in a number of papers, [1-5] but no
solution including such a kinetic surface-evapora-
tion condition has been obtained, nor have the
implications of this phenomenon been fully
explored.

The near-equilibrium solution is valid at
sufficiently high Reynolds numbers, which can
be illustrated by saying that when the Reynolds
number is high, the impedance of the boundary
layer to diffusion of vapor is very much higher
than the impedance to surface phase change,
which is in series with it [4]. The latter is then
negligible, and the coupling between the flow
and the surface-evaporation phenomenon is
diffusion limited. This statement leads to the
question, What exactly are the lower limits of
validity of this approximation?

If the surface-evaporation-rate law is con-
sidered, the results of the near-equilibrium
approximation must be interpreted as saying
that the difference between the actual wall
temperature and the thermo-dynamic-equi-
librium temperature of the vapor is small
everywhere. The actual wall temperature is
determined by the rate equation so as to supply
the mass flux from the solid to the vapor phase.
The equilibrium temperature is determined by
the partial pressure which must exist near the
wall to drive the mass flux across the boundary
layer by pressure diffusion. Smallness is measured
in comparison with the temperature difference
driving the heat transfer; that is, the difference
between adiabatic recovery and wall tempera-
ture.

The well-known result of near-equilibrium
solutions for self-similar flows, for instance, is
that the surface (equilibrium) temperature is
constant, while the sublimation rate varies as the
inverse square root of the Reynolds number. We
may consider the Reynolds number as a unique
measure of the distance from the origin of the
boundary layer if the free stream is fixed and the
wall temperature is constant. But if the mass
flux increases towards the origin of the boundary
layer, then the wall temperature must increase
according to the sublimation-rate law. The wall
temperature cannot be constant, and therefore
the Reynolds number cannot be a unique
measure of distance. Also, the near-equilibrium
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approximation must break down at some
distance towards the origin.

The properties of the boundary-layer scale in
terms of two parameters, the Reynolds number
and the wall temperature (or more correctly,
some ratio of free-stream temperature to wall
temperature). Having recognized that the wall
temperature is coupled to the problem through
an independent rate equation, one concludes that
the introduction of the kinetics of surface phase
change brings in a new scale parameter. This
scale has the form of a distance from the origin
of the boundary layer for fixed free-stream
conditions and given thermodynamic phase-
change constants.

The condition for validity of the near-
equilibrium approximation can now be stated
as follows: The approximation is valid when
the Reynolds number is much higher than the
Reynolds number formed with the leading-edge
scale described above. Moreover, the illustrative
argument based on the relative magnitude of the
impedance to mass transfer is seen to be in-
complete; it does not consider the nonlinear
coupling between the “‘impedance” and the
driving potential. For instance, it implies that
when the Reynolds number is very low the
boundary-layer transfer impedance is low and
the coupling between flow and sublimation is
dominated by the surface impedance (rate
limited). This is not true if the Reynolds number
is low by virtue of low pressure at a given
distance from the origin. It is only true if the
Reynolds number is low by virtue of small
distances from the leading edge.

The purpose of this study is to investigate the
character of the rate-limited sublimation prob-
lem and, in particular, to determine the scale of
this region. It is proper to make two remarks at
this point. First, the analysis is based entirely on
continuum boundary-layer concepts. This is
equivalent to saying that the scale of the rate-
limited region must be larger than some mini-
mum distance required for validity of continuum
boundary-layer concepts for the analysis to be
meaningful. This situation turns out to be
practically possible. Second, in regard to practi-
cal flows over somewhat blunted bodies, the
statement “origin of the boundary layer” must
be interpreted as meaning a virtual origin from
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which the boundary layer would start to attain a
thickness and profile it has at the point under
consideration. This implies that the distance to
this virtual origin must be larger than the radius
at the blunted nose.

The current trend towards finer re-entry shapes
and the concern with problems such as the
interaction between ablative mass addition and
hypersonic viscous induced pressure [6]—typi-
cally a leading-edge phenomenon—tends to
bring the transitional sublimation regime into
the realm of practical problems.

Finally, the present solutions for the rate-
limited sublimation region involve a number of
approximations in the treatment of the boundary
layer and should be interpreted mainly as a
study of whether or not the problem is sufficiently
significant to deserve a more rigorous and much
more difficult analysis.

II. FORMULATION

The problem requires the simultaneous solu-
tion of both the boundary layer and surface
phase-change rate equations. Phenomenologi-
cally, these fall into four groups describing,
respectively, the energy and the mass-transfer
properties of the boundary layer and the surface.

The first is a solution of the classical binary
boundary-layer equations which we consider to
be uncoupled from the mass-diffusion equation
{71, implying a Lewis number approximately
equal to one. We do not consider chemical
reactions between the interdiffusing species. The
solution is taken in the approximate form

Cy, a
(M, dp dT.
“*“(m’ & —d;) )

where B is a normalized blowing parameter

M
B=—or-. 3
Pele Cho ( )
The subscript 0 indicates reference conditions
(non-ablating surface), and the Stanton number
Cn is defined on the basis of the adiabatic
recovery enthalpy (temperature):
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Pe ue(llaw - hw) Pelie ép(Taw —
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Equation (1) is the well-known linear approxi-
mation derived from similarity solutions which
holds to values of B on the order of 0-3. The
numerical value of the proportionality constant
and its dependence on Prandtl number, mass
ratio, and pressure gradient (within the similar-
flows family) has been discussed exhaustively in
the literature [1, 7-10]. In the context of the
discussion. which follows, it is to be considered
as a formal approximate expression of the
behavior of the Stanton number for B sufficiently
small, with « an unspecified function of the
indicated parameters, applicable also to non-
similar flows. It will be seen « posteriori that B
goes from 0 when Re; = 0 to an asymptotic
value Bo when Rez — co. In the initial region the
wall-temperature gradient is very strong and
equation (1) is only defendable as the first
term of an expansion about B = 0. In the
region of asymptotic approach to equilibrium
gradients are small* and, provided B, < 0-3,
equation (1) holds as a “local similarity”
solution. It is difficult to imagine a situation in
which essential errors in the trends exhibited in
the transition region would result from the use
of this approximation.

To the same degree of approximation the
recovery factor for the binary boundary layer
is expressed in terms of the recovery factor for the
reference flow:

 Taw—Tu J5
= TT Tw ro-—P—’_B (5)

The numerical values of B = f(Pr, dp/dx,
dTw/dx, Ms/M;s) are less well defined from
available solutions even for self-similar flows. It
will be seen later, however, that the proportion-
ality constants a and B appear in the solution only
as a ratio. Thus, if they both vary in the same
way with My/M,, Pr, dp/dx, and dT/dx to a
first approximation, the effect -of this dependence
is minimized.

* The external pressure gradient is an independent
parameter. It is assumed to be such that use of the “local-
similarity” concept can be justified in regard to it.

The thermal coupling between the flow field
and the boundary is specified by

q = Mshs ©)

where A is the heat of sublimation of the wall
material. This approximation neglects radiant
and conductive heat losses. It also neglects the
heat needed to bring the sublimating material
from its initial temperaiure to sublimation
temperature; both are fair approximations for
low-temperature sublimators.
If we define

s (haw — h)

f = 7
PelleCh As ( )
and use the identity
E —_ S" - T‘“"ﬂ —Tw (8)
B Ch,, (1 aw " Tw)

we obtain the second well-known relation of
simple theories.

The solution of the boundary-layer diffusion
equation for the transfer of the sublimated
material away from the wall is [7]

C - Csw (hT - hw)
T Cow T (hre =) ©)

This form is strictly true only for the case where
both Le and Pr are equal to one; in this case the
diffusion equation and the equation for the
distribution of total enthalpy in the boundary
layer are identical and concentration and energy
profiles are similar. The effect of Pr on the
similarity of the profiles is minor [7, 10}, weaker
than its effect on Cj itself. This justifies the use
of equation (8) without also setting Pr =1 in
equation (1) and equations derived from it.

Combining equation (9) with Fick’s law [7], we
obtain an expression for the wall concentration
as a function of the rate of sublimation at the
wall:

q9
o hre— e

haw — h
= CmPeueh —T:Ch-

’1.13(1 - ng)

(10)

A last equation couples the concentration of
the sublimated species in the boundary layer to
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the sublimation rhenomenor itself. The nel rate
of exchange of surface materiai across the
surfzee-potential barrier is

. f M
Rig == E/\/ \ZT_R’[— ) (P equ Psw}
PM
=z € ;7(7;727‘;"'*';?:,;0) (Cg equ Csw) (1 1)
where ¢ is an empirical “vaporization co-

efficient”, P; ¢qu and (s equ are the equilibrium
partiz: pressure and concentration correspond-
ing to the wall temperature, and Py, and Cyy, are
the actual partial pressure and concentration of
the subliming material immediately over the
surface in the boundary layer. For a two-
component mixture one has the following
auxiliary relaticns between the concentrations
and the molecular weights (M is the mean
molecular weight of the mixture):

P.g ﬁ MB
FRa T {“*k”‘qMﬁ
o Cs 1 Cs -1 (12)
Mﬂm+m"m}
CA + Cs - 1 j

An important characteristic of the phenomen-

on is that there is a maximum rate of escape of *

surface atoms, which occurs when the concen-
tration of the material in the surrounding gas is
zerc and which depends only on the wall
temperature [2]. Severai analytical expressions
for the value of P;equ that determines this
maximum can be written down, depending on
the subtlety of the microscopic model. The

simplest one, corresponding to the integral of

the Clausius—-Clapeyron equation, is
M;A,

where p is a constant. This yields for the maxi-
mum (forward) vaporization rate the expression

) M, M,
(Ms)max = €p RT.) P\~

~). (14)
The set of equations (1), (3), (8) and (13),

Psequxpexp(“_

RTy

CT OF BURFACE

Pelle Cho,\/ 2n RTawo B = J(TuWQ\
L4 € : Ms - Tw}
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complete the general definition of the problem.
We shall assume in this anslysis that &, can be
treated as an a priori (or iteratively) determined
constant, not dependent on the concentrations
[t1}.

The following dimensionless parameters,
which depend only on the properties of the
surface and/or the free-stream conditions, are
now defined:

= 2t 1
H Rfom, (16)
R & ¥ i 5
M T HT Y {7
 Tr—T.B
— R (18
— 1
TT ?-,—‘—2**‘ ﬁ(”o i 1)
k=1-— = : (19)
awy + ____‘1{2'.0

In addition, define the function ¢ (dimensions of
pressure)

£ = t ,\/ (211 S T awo) pette Cny v/(Rez). (20}

The function § represents the product
Ch(,\/ (Rez) which, at least for self-similar flows,
is a constant. Otherwise this product varies with
x through the streamwise pressure and the wall-
temperature gradients. While questions must be
raised as to its behavior near the singular poin{
x = 0, which are mentioned again later, at large
Reynolds numbers it is certainly a finite, slowly
varying quantity.

Fliminating m, between equations (3) and
(11) and rearranging, we write

[Py eqe — Peul  (21)

together with an auxiliary caloric equation of By straight substitutions we transform it intc an

state defining ¢p

equation in only one unknown, whick is B:
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1 — (a/Pr) B
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Bt 12 )
V(Rez) [1 + B[r — (M4/M;) TH — (a/Pr)] — (ar/Pr) BZ]
B[r — (Ma/M;) TH| — (ar/Pr) B2

[”"’AH exp (H 1 Blr — (Ma/My) TH — (a/Pr)] — (ar/Pr) B?
k+ B[r — (M4/M;) TH — k (a/Pr)] — (ar/Pr) B2

) L (22)

Bk (k + Blr — (MalMy) TH — K (o/Pr)]— (ar/Pr) B + THI(o/ Pr) B — 11)] J

1. ASYMPTOTIC BEHAVIOR DOWNSTREAM
For large values of Re the left-hand side of
equation (22) vanishes and the equation yields
a non-zero* value B = By given by the solution
of the factor in brackets on the right-hand side.
Note that this corresponds exactly to stating

[Ps equ — Psw] ~ O

The solution is identified with the “equilibrium
solution” in which the partial pressure of the
vapor, and consequently also its concentration
and temperature, are values corresponding to
thermodynamic phase-change equilibrium.

In the present formulation the solution is
given in terms of the constant p in the analytical
expression for P;equ (instead of specifying
Tw = Ts equ separately from thermodynamic
tables). A convenient graphical procedure is
obtained defining

* The singularity B = 0 is uninteresting. It corresponds
simply to flow without sublimation.

By [r — TH (Ma/M;)] — B2 (a/Pr) =
1 — (a/Pr) Bs

in terms of which the asymptotic solution takes
the form

P, H Xo+ k—TH
=Xyt ["—x:ﬂ—‘} @

This is plotted in Fig. 1 for a particular value of
I'. For any external static pressure P, and
parameters describing the properties of the
sublimating material (p and H), one obtains a
unique value for the wall-temperature function
X». With this value of X» and further para-
meters pertaining to the reference flow and the
sublimating material (a/Pr7), Fig. 2, which is a
plot of equation (23), yields the value of the
blowing parameter Beo.

23)

-i-0

u T
— Asymptote (7, =0}

-08

T

-0-6

_—

k=0(Pr=1}

-0-2

k=-0:797(Pr=07, —
M>8)
lI‘= 0-287 {air}

-Asymptote X, =<k or ], = 7,',,o
1 . i

20 25 30 35

Fi1G. 1. Wall-temperature function.
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Figure 3 is an auxiliary figure giving the varia-
tion of a/Prr. This can be written as

e aff
Prr (1 — k[ — TeTr)]

The two proportionality constants a and 8 [see
equations (2) and (5)] appear as a ratio. There-
fore, their dependence on the principal variables

@3

It 7 1o~ S
e // ’/Sy/ |
5 X / i
o & 2 /// //)/ ]

04 05 06 07 08 09 10
o
Pr

Fic. 2. Asymptotic blowing parameter vs. wall-

temperature function.

B

-0

N o

-2 (xi0?) Jofor Pr=i an 2 _q.
»s.\f”(xo }{cfor Pr-072 wtth——B 9-64
N

: -
AS L
\\ /[(

- PreOT2-" . o

10 7 "f_’_’{p,g,,o with 8=0-095

— s —

7,

y A

~k(Pr=0-72)

N B

10°2 ] bk i1 ] I
i 10 100

Mach number, &

FIG. 3. Variation of some Mach-number-dependent
parameters,

of the binary boundary-layer problem, which are
My/M4, Pr, pressure and wall-temperature
gradient, is minimized. If one makes the hypo-
thesis that both vary in the same fashion with
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these parameters, which seems probable, then
the combination a/Prr is to a very good approxi-
mation a function only of the free stream. Using
the flat-plate solution given in reference 9, the
numerical value of the ratio o/f is 9-64.

IV. BEHAVIOR NEAR THE STAGNATION POINT
Equation (22) has the form

_t /B
v{(Rey) B’

The parameter ¢ appearing on the left-hand
side of equation (26) represents the product
Cryv/(Rez). The assumption is made that this
product is a constant, as it is for self-similar
boundary-layer solutions. Now, since g = Amts
is bounded according to the surface-evaporation
equation, the assumption implies that the wall
temperature tends to the recovery temperature
towards the leading edge (Re; - 0). It follows
that the wall temperature is variable, and
Crov/(Rez) = constant can only be good in the
sense of “local similarity”.

It is worth noting that the above implies two
statements of unequal importance to the present
analysis. The more important one concerns the
behavior of Cp,; that is, that Cy, grows without
bounds towards the leading edge. This leads to
the result that B ~ m1,/Cp, tends to zero there
and, thus, that B varies between zero and Bw
over the entire region of interest. The second and
less important one concerns the numerical
accuracy of the assumption Cpyv/(Rez) =
constant. It is undoubtedly poor very near the
origin where the wall-temperature gradients are
large, but it is probably satisfactory in the
region of asymptotic approach to the near-
equilibrium solution downstream of the leading
edge.

It is not possible to discuss conclusively the
difficult problem of the singularity at the leading
edge. It must be accepted on the basis of heuristic
arguments and the analogy with the behavior of
ordinary boundary layers at the leading edge,
which involves similar difficulties. Physically,
the behavior outlined in what preceded is quite
reasonable. Moving upstream towards the lead-
ing edge, the heat flux to the wall increases, and
the wall temperature must rise to permit an
increased rate of sublimation.

(26)
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Returning to equation (26), the right-hand
side is expressible in the form of a series in the
interval 0 << B < Bw. If the asymptotic blowing
parameter B. is reasonably small, which is
already implied by the use of the linear-blockage
equation, ecquation (1), a limited number of
terms of the series will represent the behavior of
the function throughout the range.

The series is

HFY 1 FO 1O
e T e B oy udiie o 27
VR =B T Y% o @7

with the following sxpressions for the function
and its derivative evaluated at the origin:

kP
A =pet — —rp (28)
£(0) w,,\ JPeell
£0 L Peel X
/%) B itorem @

The parameter « has the form

g =
(THpe—H -+ k(k — DH Hpe-H
THVpeH 1 Ik — 3T HpeB © kP LH — I

(30)

and it was defined so as to become one when
& = 0 (Prandtl number unity).

The first two terms of the series expansion,
tend to the asymptotlc limit of f(0)/£(0). As the
Reynolds number increases, this limit is not
correct because the ratio f(0)/f{0) does not
equal Bo unless By tends to zero. We know By
independently from equations (23) and (24), or
Figs. 1 and 2.

The argument suggests that if one replaces in
the two-term expansion

_f (0)
Ok

one obtaing a good approxxmation to the be-
havior of Bfor all Re, provided By is sufficiently
small to justify the linear expression for the
blockage factor, equation {1).

Accoidingly, an approximate equation for B is
as follows:

3 . +/ (Rez)
VRem + VAT

1)

v/ (x/9)
Vix[8) + 1

(32)

5
S

ror % -
Compiete solution A
o8} ‘- . t(‘ e S J4
;E} ! B ~ 3
Py i r-plyoean
] 1 Bo /X +|
06 -
THeS V'3
B jy B,20-2 .
B, oap 4 & g
) /17 Bre 964
R [ THeras
o2 ¢ k=0
‘\y i Te-0 095|
I
0 2 3 B 7 5 10
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where A or § are scale factors defined by:
. F Boﬂ 2

] - == Q.-

¥ (0) i ug

A is dimensionless. 5 has dimensions of length.
It can be given explicitty as a function of

reference-flow sublimating-materia! parameters
by*

Pelte “

(33

'y e ﬁ/ - _ f[\Pl’ \ ~2 27" ] R
b= 32 !])6’ Tk T h’ B 5 Hetele }st
Tawo [Con/ReDE. (34)

Equation (32) is compared fo the numerical
solution of the full equation {22) on Fig. 4 for a
particular sxample.

/a

F1G. 4. Comparison of full solution with the approximate
modified first-term expansion.

By straighiforward substitutions among the
basic equations (1), (3), (9), and {i3) all physical
parameters of the problem can be written out in
terms of B. If these are then expanded in series
and B as given by equation (32) is substituted in
the first term of the cxpansion, one obtains
explicit expressions of their variation near the
origin of the boundary layer. As an ¢xample, the
equation for the blowing rate is:

cf(O‘ H
//x\ '
2 ki
J\ " M,

5 ““’°) NAU A

This squation shows that #1; starts at the
leading edge from its maximum value (dictated
by kinetic considerations) and decreases down-
stream to its asymptotic behavior, which is

W = (35)

* Note that Cn) +/(Rez) is 2 constant with x.
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proportional to the inverse square root of the
streamwise distance.

Similar explicit expressions for the variation
of the other parameters are given in more
detail in reference 13, The concentration and the
partial pressure of the sublimating species have
at the origin values which depend only on & (the
Prandtl number) and which are zero for the
particular case of Pr = 1. They increase down-
stream. The wall temperature at the leading
cdge is the adiabatic recovery temperature for no
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the Mach number, and the free-stream static
temperature, respectively. The bracketed term in
the numerator depends only on the properties of
the sublimating material. The entire factor on the
left-hand side is independent of pressure. Conse-
quently, Fig. 5 shows that during the initial
re-entry from space (p/P. == o) during which the
Mach number is roughly constant (therefore
H = constant and [ == constant), & increases to
a maximum at some aliitude fixed by the value
of the parameter p and then decreases.

'%,L‘A*.y.ijw.’,_- S —

FiG. 5. Typical variation of the rate-controlled flow length, showing lines of B, = constant.

ablation, that is, if Pr =1, it is the free-stream
stagnation temperature. It decreases downstream
to its asymptotic value.

It is of interest to consider {urther the para-
meters 8, which determines the scale of the
adjustment to the asymptotic solution. From its
definition and using the equation of state, one
obtains
3 S[pe® (MM )]
¥

27 {Chy v/ (Rex) 2] {(Taro/ Te) A e] {peate]

p [V(AP)]2 P, . n

7, lmg =5 BZ cxp 2H) (36)
This is plotted in Fig. 5. Note that the three
bracketed terms of the denominator on the left-

hand side depend only on the basic flow feld,

V1. DISCUSSION
In order to show the imagnitudes involved,
consider the following estimates: Let the model
be a slender cone for which [9]

Cho/(Rez) = 0-512.

Assume pe and g, constant at their value in the
tropopause {uede = 4 X 1074 1b/ft). It follows
that

o Taw, 1
(2 (Cha ViRe) 2 | 710 | [nead

~ 133 K 10~ bR (37)

The constant p can be obtained from vapor-
pressure data. Reference 12 (pp. 1751-1755)
gives a table for selected organic and inorganic
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substances from which it is evident that a
representative value is p = 10% Ib/ft2.* (The
value p varies around this average by one order
of magnitude for almost all the substances listed).
The vaporization coefficient € is poorly known.
For solid sublimators it is doubtful that it should
exceed 0-1 [2], and it can be less than that by
two orders of magnitude. Finally, the ratio
M/M 4 can be taken as unity for the purpose of
this estimate.

It follows that, quite generally,

10-1 < ;/% < 1079 ft. (38)

The magnitude of 8 is seen to depend very
strongly on the value of H. Since it increases
rapidly with H, let us illustrate the problem for
a large value of H: Data typical of graphite
(A = 25000 Btu/lb, M; = 12) at a flight Mach
number of 15 yield approximately

L AM, M,
= RTaw,  RT,

The value of p = 10° Ib/ft? used in the preceding
estimates represents graphite quite well—well
enough considering the wuncertainty in the
evaporation coefficient e. Since § increases with
pressure, let us consider relatively low altitudes
consistent with the assumed Mach number and
high-speed re-entries, say 30 000 ft. Consider a
20-deg cone for which the surface pressure is
approximately 300 Pw. It follows that

1073 <« 8§ < 101 in.

Had an altitude of 25000 ft been assumed, 8
would be larger by an order of magnitude. Had
data typical of teflon been used (A~ 1000
Btu/lb, M, = 100), H would have been in the
order of 5, and 8 would be entirely negligible.

Tt is interesting to note that the maximum 8 for
a given H occurs at values of p/P, which corre-
spond to P, considerably higher than 1 atm.
While pressures above atmospheric can occur,
because p. and .#. are values outside the
boundary layer behind the leading shock, they
would not normally be as high as indicated for
8 max.

—1 -1
(1+72 ./Iﬂ) ~ 167,

* In the notation of the reference, p = 10® where b is
tabulated.
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The rate-controlled region can be taken to
extend over a distance from the origin equal to
100 §; that is, for points on the surface lying
beyond this limit the error incurred by using the
equilibrium solution for B, w15, Ty, etc., is less
than 10 per cent. Figure 6 shows the behavior
of the rate of sublimation indicated by both the
equilibrium approximation and the full solution
and illustrates the present argument.

) . . |
Equitibrium solution, mnv—
q solution. mrye=

Present solution, MSN—Y-_',—
X4
15

| » Equilibrium approximation

i valid within 0%

Rate - -
controlled
regicn <«

x=1003

x (distance from the leading edge)

FIG. 6. Schematic variation of the sublimation rate.

The preceding estimates of the scale of the
leading-edge effect indicate clearly that, in com-
parison with reasonable man-made re-entry-
vehicle sizes, the region of transitional sublima-
tion is very small, indeed normally negligible.
However, 8 is an independent parameter which
does not scale with the body geometry. The
sublimation of small models in wind tunnels or
meteorites in the atmosphere may be totally
dominated by transitional effects.

This scaling problem can best be demon-
strated by using a concrete example. Consider
the wind-tunnel experiments reported in re-
ference 3 using camphor in a Mach 5 wind
tunnel. For camphor the materials data at actual
test conditions can be given quite accurately,
except for «:

A=330)/g, M,=152, p=174 x 10°Ib/fi2.

Estimate ¢ at 0-1 as before.

With the tunnel recovery temperature at
350°K and the static pressure of 10 mm Hg,
one finds H = 17-2 and p/P. = 6:3 x 107:

d ~26 x 102in.
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Considering that the transitional sublimation
region extends to a distance of the order 100 3,
one concludes that the entire wind-tunnel model
is affected by transitional effects under these
test conditions.

One other aspect of the aerodynamics of
subliming bodies can be affected by the present
results in an important manner. It is the problem
of surface recession and terminal shape. Briefly,
the shape of a slender body y,  at any instant
t is given by the solution (with proper boundary
conditions) of

e, b , K

T L V) O Ea I

K
Vi — o) + /8

where K is a constant, X1 the distance to the
point (x,y) from the leading edge, which is
itself receding relative to fixed coordinates at an
unknown rate ¢ .

The nature of this problemis such that

m y@,t,8 # Y, t,0=0
&0
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Résumé—Le comportement de la couche limite laminaire binaire avec souffiage est couplé avec la loi
de la cinétique d’évaporation du matériau de Ia surface. On trouve que la solution de ce probiéme
combiné présente un comportement asymptotique 2 des nombres de Reynolds élevés qui s'identifie
avec la solution habituelle prés de P'équilibre dans laquelle la vapeur prés de la paroi est trés voisine
de I’équilibre thermodynamique du changement de phase. Cependant la solution au voisinage de
équilibre n’est plus valable dans une région prés de Porigine de la couche limite, qui est caractérisée
par une longueur formeée avec des paramétres physiques décrivant 'écoulement de base et les propriétés
de la surface. Dans cette région, qui est traitée ici approximativement, le paramétre de soufflage
décroit vers zéro, la température pariétale augmente, et la vitesse de sublimation tend vers une limite
supérieure lorsqu’on approche de I'origine de la couche limite.

Le résultat principal de ’analyse est I'estimation de la longueur de la région de transition vers la
solution au voisinage de I’équilibre. Cette longueur est une caractéristique indépendante du probléme
et ne varie pas comme les propriétés de la couche limite (c’est-a-dire, avec le nombre de Reynolds).
Ogci implique que tandis que la longueur de transition sur des véhicules typiques de rentrée est
fanbl.e et probablement négligeable & moins que le bord d’attaque soit trés aigu, des modeles
pratiques d'essais en soufflerie peuvent facilement &tre affectés sur la plus grande partie de leur corde.

Zusammenfa;sun_g—Das Verhalten der laminaren, bindren Grenzschicht mit Ausblasen wird mit dem
Gesetz der kinetischen Verdampfungsgeschwindigkeit des Oberflichenmaterials gekoppelt. Es ergibt
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sich, dass die Losung dieses kombinierten Problems bei grossen Reynoldszahlen ein asymetrisches
Verhalten aufweist, das der gebriuchlichen Losung fiir nahezu erreichtes Gleichgewicht, wo der
wandnahe Dampf nahe am thermodynamischen Gleichgewichtszustand des Phasenwechsels liegt,
gleichgesetzt wird. Die Losung fiir das nahezu erreichte Gleichgewicht ist jedoch in einem Bereich
nahe dem Ursprung der Grenzschicht ungiiltig; dabei wird der Ursprung von einer Linge
g2kennzsichnet, die aus physikalischen Parametern, die die Grundstrémung und die Oberflicheneigen-
schaften beschreiben, gebildet wird. In diesem hier niherungsweise behandelten Bereich geht der
Ausblasparameter nach Null, die Wandtemperatur nimmt zu und die Sublimationsgeschwindigkeit
tendiert nach einem oberen Grenzwert, wenn der Ursprung der Grenzschicht erreicht wird. Das
Hauptergebnis der Analyse liegt in der Lingenabschétzung fiir den Ubergangsbereich zur Losung fiir
nahezues Gleichgewicht. Diese Linge ist eine unabhiingige Kenngrosse des Problems und dndert sich
nicht, wie es bei den Eigenschaften der Grenzschicht (d.h. mit der Reynoldszahl) der Fall ist. Dies
schliesst ein, dass dic Modelle fiir praktische Versuche im Windkanal leicht fast iiber ihre ganze
Profiltiefe beeinflusst werden konnen, wihrend die Ubergangstinge an typischen Wiedereintritts-
fahrzeugen klein ist und wahrscheinlich vernachldssigbar, wenn die Vorderkante nicht sehr scharf ist.

Annoranus—iloBegexie TaMuHApHOrs GHHAPHOrC MOTPAHMYHOTO CJIOH €6 BHYBOM B3au-
MOCBABAHO € BAKOHOM, ONDeJNIAIOIMM KUHETHKY HCHAPEeHNA MATepHaaa NOBEPXHOCTH.
Hafineno, yro npyn GoabpmaX sHaveHRAX uyncna Pefinonnpca pemenue sTo¥t BRAaUMOCBHAHHON
3a739H ACUMOTOTHUYECKH COBITAAAeT ¢ OGBIMHLIM PEUICHUeM JIA CAYYAS HOUTH PABHOBECHOIO
COCTOAHUR CHCTEMB, KOTAA Hap ¥ CTEHKY HAXOXHTCH HMOYTH B TEPMONMHAMuYeckoM ($asoBoMm
paBHoBecHM, C;THAKGC, PelIenie XiIf CIYy4Yan OKOJOPABHOBECHOTO COCTOAHMA CHCTEMBL HeCTIpa-
Be;UIMBO JUIA 00JACTM BOBHMKHOBEWMA TOTPRHHYHOLG CJIOH, KOTOPas XapaKrTepuayerce
H1IMHoI0, o6paroBaHHON U3 (PUIMYECKHX MAPaMETPOB OCHOBHOIC NOTOKA U ToBepXHOCTH. B
aTott oGnacT, onucanuoyt B paorTe NpuGIMIKEHHO, IapaMeTp BAYBA YMEHbUIAeTCHA X0 HYJH,
TEMIIGPATYPA CTEHKN YBEIMUMBACTCH, & CKOPOCTH cYyCIMMAnuy CTPEMHTCA K BEPXHEMY Tpe-
ey 1o Mepe NPHOIMKCHNA K HAYaJdy NOTPAHHYHOTO CHOH.

OCHOBHHIM DPE3YJIbTATOM HACTOAUIETO AHANMBA HBAAETCH ONEHKA JNHMHH NepexonHol
06racTH K OKONOPABHOBECHOMY PELICHHMIO. DT3 JINHA ABJIACTCH HE3ABUCHMON XapaKrepucTu-
KOt 3aflayM M He W3MeHsIeCTH B OTVIMYME OT XAPAKTEePHCTHK HOTPARHMYHOTO Ciof (T.e. ¢
rpurepreM Pettmoaspca). Orcioga clIexyer, 9To TOTAS KaKk JAJMHA Nepexoma HA OCHUYHHX
paKerax, BOZBPAMAIOMIMXCA B aTMOCPepy, Maja M BO3MOKHO UPEHESPEKMMO Mana, ecin
TONLKO TEPeRHAR KPOMKA He O4eHb OCTPAaf, MOIENN [T NPOJYBHM B aspomuHaMmutueckott

Tpyfie Jerko Mory? GHTb 3aTPOHYTH B GOMBIIEN YACTH MX HOBEPXHOCTH.



